Performance Assessment of Wet-Compression Gas Turbine Cycle with Turbine Blade Cooling

ثبت نشده
چکیده

Turbine blade cooling is considered as the most effective way of maintaining high operating temperature making use of the available materials, and turbine systems with wet compression have a potential for future power generation because of high efficiency and high specific power with a relatively low cost. In this paper performance analysis of wet-compression gas turbine cycle with turbine blade cooling is carried out. The wet compression process is analytically modeled based on non-equilibrium droplet evaporation. Special attention is paid for the effects of pressure ratio and water injection ratio on the important system variables such as ratio of coolant fluid flow, fuel consumption, thermal efficiency and specific power. Parametric studies show that wet compression leads to insignificant improvement in thermal efficiency but significant enhancement of specific power in gas turbine systems with turbine blade cooling. Keywords—Water injection, wet compression, gas turbine, turbine blade cooling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Techno-Economic Assessment of Different Inlet Air Cooling Systems in Warm Dry & Wet Climate Stations

Performance of a gas turbine mainly depends on the inlet air temperature. The power output of a gas turbine depends on the flow of mass through it. This is precisely the reason why on hot days, when air is less dense, power output falls. The objective here is to assess the advanced systems applied in reducing the gas turbine intake air temperature and examine the merits from integration of the ...

متن کامل

Optimization of turbine blade cooling with the aim of overall turbine performance enhancement

In the current work, different methods for optimization of turbine blade internal cooling are investigated, to achieve higher cyclic efficiency and output power for a typical gas turbine. A simple two-dimensional model of C3X blade is simulated and validated with available experimental data. The optimization process is performed on this model with two different methods. The first method is ...

متن کامل

Optimization of turbine blade cooling with the aim of overall turbine performance enhancement

In the current work, different methods for optimization of turbine blade internal cooling are investigated, to achieve higher cyclic efficiency and output power for a typical gas turbine. A simple two-dimensional model of C3X blade is simulated and validated with available experimental data. The optimization process is performed on this model with two different methods. The first method is ...

متن کامل

Power Generation Analysis for High-Temperature Gas Turbine in Thermodynamic Process

A thermodynamic process of power generation has been developed for a gas turbine, a steam turbine, and a compressor, supported by adiabatic expansion or compression processes. Recently, the possible inlet temperature of gas turbines has been increased to 1500°C or more, and the inlet temperature of steam turbines also has been increased to 650°C. At these high-temperature conditions, turbine no...

متن کامل

Simulating Cooling Injection Effect of Trailing Edge of Gas Turbine Blade on Surface Mach Number Distribution of Blade

In this research, a gas turbine blade cascade was investigated. Flow analysis around the blade was conducted using RSM and RNG.K-ε turbulence modeling and it is simulated by Fluent software. The results were considered for the cases as Mach number loss at the trailing edge of blade caused by vortexes that were generated at the end of blade. Effect of cooling flow through the trailing edge on th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012